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Abstract-Recently, data uncertainty has developed into an accepted topic in database and data mining area 

due to the enormous amount of uncertainty involved. The previous methods extend traditional 

spatiotemporal tolerance for coping with data uncertainty. The methods used Continuous Range Queries and 

Superseding Nearest Neighbor search, thus rely on conventional multidimensional index. Such methods 

cannot handle uncertain objects to NN classifier based continuous queries. At the same time, Nearest 

Neighbor, which is essential characteristics of uncertain objects, has not been considered in measuring 

contour segments in uncertain data. In this paper, a Contour Generalization based NN approximation (CG-

NN Approximation) technique is developed, with the objective of solving spatiotemporal tolerance problem. 

Contour Generalization technique reduces the overhead count on analyzing the NN based continuous queries 

and uses a distance function to produce high dimensionality on spatiotemporal queries. An optimal Contour 

Generalization algorithm produces an optimal Contour Generalization for every input query points.CG-NN 

Approximation considers various types of queries on uncertain database, determines the query type, and 

distance function to provide solution for queries on uncertain data. Contour Generalization approximates a 

polygonal contour, so that it is sufficiently close (i.e.,) nearest neighbor and has less contour segments. The 

lesser contour segments takes less storage-space and thus minimizing the computational overhead. 

Experimental evaluation is measured in terms of computation overhead, spatiotemporal tolerance, storage 

space and query processing efficiency. Experimental analysis shows that CG-NNA technique is able to reduce 

the computation overhead for continuous queries on uncertain data by 19.35% and reduce the average 

operation cost by21.24% compared to the state-of-the-art works. 

 

Keywords-Continuous Range Queries, Superseding Nearest Neighbor, Contour Generalization, NN approximation, 

Spatiotemporal, Polygonal Contour 

   

I. INTRODUCTION 

 

Due to the intrinsic property of uncertainty, numerous interesting queries have been raised for diverse 

purposes. Among diverse approaches for modeling uncertain data, many research papers have been contributed in 

this domain. Processing Continuous Range with Spatiotemporal Tolerance (PCR-ST) [1] relaxed query’s accuracy 

requirements through well-defined query semantics. Superseding Nearest Neighbor on Uncertain Spatial Database 

(SNN-USD) [2] used multi-dimensional index aiming at producing SNN core without deriving the whole 

superseding graph.  

Reverse Nearest Neighbor (RNN) [3] improved the pruning efficiency using sampling-based approximate 

algorithm. Voronoi diagrams and R-Tree index [4] was applied on uncertain data with the objective of reducing 

pruning overheads. In [5], Probability Distribution Similarity was applied on uncertain data aiming at improving the 

efficiency and scalability using Gauss transform technique. With the objective of efficiently evaluating the trajectory 

queries in [6], u-bisector was applied on imprecise location data. Though efficiency was improved in all the above 

said methods, but computation overhead was compromised. To address issues related to computation overhead, CC-

NNA technique used Contour Generalization technique.  

 

II. RELATED WORK 

 

Location-based application uses the position of mobile device to identify the current user location and 

customizes the results of the query to include neighboring points of interests. In [7], a service architecture based on 

user centric was designed with the objective of improving privacy between the users and the service providers. In 
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[8], dynamic programming techniques were applied aiming at reducing the error. Clique Tree Propagation [9] 

algorithm was introduced to reduce the computation cost by considering query workload.  

 

In [10], Chebyshev method was applied to similarity measurement for time series data improving the noise. 

To reduce the computational cost, another method based on uncertain graph streams called Node Neighbor Tree [11] 

was designed. Rough set theory Clustering Technique (RCT) [12] was applied to minimize the forecasting period 

using Echo State Network (ESN). The above said methods though minimized the computation cost the query 

processing efficiency remained unsolved. To address this, CC-NNA technique used Optimal Polygon Contour.  

 

Many research works were conducted on efficiently addressing range queries over uncertain objects. In 

[13], pivot-based indexing technique was applied aiming at improving the speed of range query computation. A 

review of data mining techniques on uncertain data was presented in [14]. Another method called Probabilistic 

Range Query [15] was introduced aiming at minimizing the preprocessing time in a significant manner. Feature 

extraction issue related to query handling was introduced in [16] using sparse coding resulting in improving the 

predictive performance of the query results being retrieved.  

 

Segmentation and sampling methods were used in [17] for Moving Object Databases (MOD) aiming at 

improving the query similarity rate. In [18], optimal set of sub-queries were retrieved in an efficient manner using 

cost-based query planning model. Effective index was performed on uncertain objects using U-Quad tree [19] 

resulting in the improvement of cost. Top-k queries were addressed in [20] using totally and partially explained 

sequences.  

 

In this paper, we formalize the problem of contour generalization based NN approximation on uncertain 

data using the polygon contour. We present a new probabilistic contour generalization based NN approximation 

technique that employs (i) Contour Generalization technique exploiting the query type and distance function (ii) 

Optimal Polygon Contour technique based on if-then-condition. Our contributions in this work are two-fold. First, 

we propose a novel technique Contour Generalization that identifies the Nearest Neighbors aiming at reducing the 

computation overhead and spatiotemporal tolerance. Second, an optimal polygon contour algorithm is designed 

based on the ‘intersect’ between the users and queries issued by them to minimize the storage space and therefore 

the query processing efficiency. 

 

The rest of the paper is organized as follows: Section 2 defines the problem of spatiotemporal and 

illustrates its characteristics by developing an algorithm that computes the optimal contour generalization for every 

input query points on mining uncertain data. Section 3 experimentally evaluates our solutions with the aid of census 

income dataset. Section 4 discusses in detail using table and graph form. Finally, Section 8 concludes the paper. 

 

III. DESIGN OF CONTOUR GENERALIZATION BASED NN APPROXIMATION TECHNIQUE 

 

Uncertain data is used in several real applications, such as sensor network monitoring, object recognition, 

location-based services (LBS), and moving object tracking. In this section, a Contour Generalization based NN 

approximation (CG-NNA) technique is presented. For improving the query processing efficiency and reducing 

execution time per iteration and percentage of tolerance level, CG-NNA is designed. The architecture of our 

proposed technique is presented in Fig. 1.  

As shown in the figure 1, architecture diagram of Contour Generalization based NN approximation 

technique comprises of two parts. The first part Contour Generalization technique is designed at aiming to reduce 

the computation overhead and spatiotemporal tolerance based on the Euclidean Distance function and Query type. 

The second part Optimal Polygon Contour using optimal contour algorithm results in the improvement of query 

efficiency.  

 

 

 



282 
 

 

 

 

 

 

 

Figure 1. Architecture diagram of Contour Generalization based NN approximation technique 

A. Design of Contour Generalization technique  

A spatiotemporal query is a time-stamped sequence of queries representing the information related to space 

and/or time. In this section, the design of Contour Generalization technique to reduce computation overhead on 

spatiotemporal queries for every input query points on uncertain data is studied. Fig. 2 shows the block diagram of 

Contour Generalization technique.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Block diagram of Contour Generalization technique 

 

 

 

 

 

Figure 2. Block diagram of Contour Generalization technique 

 

As shown in Fig. 2, the Contour Generalization technique initially measures the Euclidean distance 

between the user queries for every input query points. Next, the query type is further analyzed based on the 

spatiotemporal tolerance factor ‘𝜕’ aiming at reducing the computation overhead and spatiotemporal tolerance on 

uncertain data. Let us consider a ‘𝑑 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙’ query that is an ordered collection ‘𝐶’ be formulated as given 

below 

𝐶 = {(𝑇1, 𝑄1), (𝑇2, 𝑄2), … , (𝑇𝑛 , 𝑄𝑛)}        (1) 

In (1), ‘𝑛’ is the length of the query ‘𝑄’ is an ordered collection, ‘𝐶’ is uncertain data with time stamps 

‘𝑇1, 𝑇2, … , 𝑇𝑛’ respectively. The objective of the proposed method CG-NNA is by using Contour Generalization 

technique, NN based continuous queries are analyzed, aiming at reducing the computation overhead over sliding 

window. 
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The Contour Generalization technique uses time-based sliding window that contains all queries that arrives 

within a fixed interval of time ‘𝑇𝑖’. The advantage of using time-based sliding window in Contour Generalization 

technique is that it follows first come first go deletion format on uncertain data. This in turn ensures faster NN 

monitoring and therefore reduces the computation overhead. 

 

Using time-based sliding window, the problem of retrieving similar queries using Contour Generalization 

technique on uncertain data is formulated as follows. Given a reference census income dataset extracted from UCI 

repository, ‘𝐷𝑆’, measure for distance ‘𝐷𝑖𝑠𝑡’, a query ‘𝑞’, the set of ‘𝑄𝑖’ queries is formulated as in (2).  

𝑄𝑖 = {𝑎 ∈ 𝐷𝑆 |𝐷𝑖𝑠𝑡 (𝑎, 𝑞 ) }        (2) 

 

For every input query points, the Contour Generalization technique identifies the Nearest Neighbors (NN) 

of ‘𝑄𝑖’ on uncertain data aiming at reducing the computational overhead on spatiotemporal queries.  

 

In this paper we address the problem of managing spatiotemporal queries issued from the side of the user of 

the form ‘(𝑖, 𝑗, 𝑇)’ on uncertain data. This indicates that a query ‘𝑞’ will be at location with coordinates ‘(𝑖, 𝑗)’ at 

time ‘𝑇’. One of the key observations to produce high dimensionality on spatiotemporal queries is that ‘(𝑖, 𝑗, 𝑇)’ is 

reduced and its computational overhead saved by approximating ‘(𝑖, 𝑗, 𝑇)’ by interpolating the nearest neighbor (i.e., 

before and after) queries. 

 

The contour generalization technique uses Euclidean distance (i.e. to identify the nearest neighbor) between 

the original queries issued by the user and the approximation is determined using simplification referred to as the 

error-tolerance. This in turn solves the spatiotemporal tolerance problem. CG-NN Approximation technique 

determines the distance function and query type for providing solution for queries on uncertain data. 

 

By applying Euclidean Distance function, Contour Generalization technique reduces the overhead count on 

analyzing the NN based continuous queries.CG-NN Approximation uses a distance function to produce high 

dimensionality on spatiotemporal queries. Let ‘𝑇1, 𝑇2’ be two timestamps of length ‘𝑁’ and let ‘𝑈𝑠𝑒𝑟1, 𝑈𝑠𝑒𝑟2’ be the 

corresponding queries issued by two users. Suppose ‘𝑈𝑠𝑒𝑟1’ issues ‘𝑥0, 𝑥1, … , 𝑥𝑛’ and ‘𝑈𝑠𝑒𝑟2’ issues ‘𝑦0 , 𝑦1, … , 𝑦𝑛’, 

then the results of the queries retrieved using Euclidean Distance function is given as in (3). 

 

𝐷𝑖𝑠𝑡 = (𝑈𝑠𝑒𝑟1, 𝑈𝑠𝑒𝑟2) =  (√∑ (𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1 )       (3) 

 

From (3), based on the query type and distance function, the proposed CC-NNA technique provides 

solution for queries on uncertain data in an efficient manner. The query type in CC-NNA technique is formulated 

with a distance function ‘𝐷𝑖𝑠𝑡’, for the respective query ‘𝑄𝑖’, for every spatiotemporal tolerance factor ‘𝜕’ and is 

given as in (4). 

 

𝑄𝑇 = (𝑄𝑖 , 𝜕, 𝐷𝑖𝑠𝑡)          (4) 

 

From (3) and (4), CG-NN Approximation technique determines the query type ‘𝑄𝑇’, and distance function 

‘𝐷𝑖𝑠𝑡’ for providing solution for the queries on uncertain data. Fig. 3 shows the algorithmic description of Optimal 

Contour Generalization. 

Input : Query ‘𝑄𝑖 =  𝑄1, 𝑄2, . . , 𝑄𝑛’, Timestamp ‘𝑇𝑖 =  𝑇1, 𝑇2, . . , 𝑇𝑛’, Dataset ‘𝐷𝑆’, 

Output: Minimized computation overhead and spatiotemporal tolerance 

Step 1: Begin  

Step 2:            For each ordered Collection ‘𝐶’ 

Step 3:                      For each Query ‘𝑄𝑖’ 

Step 4:                                Measure Euclidean Distance function using (3) 

Step 5:                                Evaluate query type using (4) 

Step 6:                     End for 

Step 7:            End for 

Step 8: End  

Figure 3. Optimal Contour Generalization  
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The Optimal Contour Generalization algorithm includes two steps. For each ordered collection and query 

issued by the user, the first step measures the Euclidean Distance function to identify the common spatiotemporal 

query types. Based on the Euclidean Distance function, the second step evaluates the query type on uncertain data 

for every input query points. This in turn reduces the computation overhead and spatiotemporal tolerance problem in 

a significant manner.  

 

B. Design of Optimal Polygon Contour 

 

Besides time-based sliding window, the CC-NNA technique uses an Optimal Polygon Contour that 

approximates a polygonal contour, so that it is sufficiently close (i.e.,) nearest neighbor and has less contour 

segments. The lesser contour segments takes less storage-space and thus minimizing the computational overhead. 

Fig. 4 shows the block diagram of Optimal Polygon Contour.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Block Diagram of Optimal Polygon Contour 

 

 

 

 

Figure 4. Block diagram of Optimal Polygon Contour 

As shown in the above figure, the block diagram of Optimal Polygon Contour technique measures two 

factors. With the objective of minimizing the contour segment, the Optimal Polygon Contour technique initially 

obtains the Euclidean distance based on the polygon and user query segment. Next, ‘if-the-condition’ is used to 

approximate the polygon contour for the queries on uncertain data.  

 

The Optimal Polygon Contour in CC-NNA technique is designed in such a manner that for any polygon ‘𝑃’ 

if intersect ‘(𝑄′ , 𝜕, 𝑇1, 𝑇2)’ is true, then there exists a time ‘𝑇𝑖  ∈ (𝑇1 , 𝑇2)’ such that the expected location of the 

original query ‘𝑄 ’ at time ‘𝑇𝑖 ’ is no further than ‘𝜕 ’ from interior of ‘𝑄 ’. On the other hand, if intersect 

‘(𝑄′ , 𝜕, 𝑇1, 𝑇2)’ is false, then for every ‘𝑇𝑖  ∈ (𝑇1 , 𝑇2)’, the expected location of the original query ‘𝑄’ at time ‘𝑇𝑖’ is 

outside of ‘𝑄’.  

 

Let ‘𝑃𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑇𝑖) denote a query, and let ‘𝑈𝑠𝑒𝑟𝑖 , 𝑈𝑆𝑒𝑟𝑗 ’ denote the user query segment between the 

segments ‘𝑠𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑇𝑖)’ and ‘𝑠𝑗 = (𝑥𝑗 , 𝑦𝑗 , 𝑇𝑗)’ of query ‘𝑄𝑖 ’ on uncertain data. Then the Euclidean distances 

between the polygon ‘𝑃’ and the user query segment ‘𝑈𝑠𝑒𝑟𝑖 , 𝑈𝑆𝑒𝑟𝑗’ are defined as follows: 

 

𝐷𝑖𝑠𝑡 (𝑈𝑠𝑒𝑟𝑖 ,  𝑈𝑆𝑒𝑟𝑗) =  √(𝑥𝑖 − 𝑦𝑖)2 +  (𝑥𝑗 −  𝑦𝑗)
2
       (5) 

 

The Optimal Polygon Contour is then formulated as given below. 

User queries Optimal Polygon Contour 

technique 

Euclidean distance using 

polygon and user query segment  

Measure optimal polygon 

contour based on ‘if-then-

condition’  
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(𝑄 ∩ 𝑃 ) =  𝐷𝑖𝑠𝑡 (𝑈𝑠𝑒𝑟𝑖 ,  𝑈𝑆𝑒𝑟𝑗)         (6) 

 

𝑖𝑓 (𝑄 ∩ 𝑃 )  = 𝑇𝑟𝑢𝑒 , 𝑡ℎ𝑒𝑛 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 (𝑄′ , 𝜕, 𝑇1, 𝑇2)  ∈ 𝑇𝑟𝑢𝑒       (7) 

 

𝑖𝑓 (𝑄 ∩ 𝑃 )  ≠ 𝑇𝑟𝑢𝑒 , 𝑡ℎ𝑒𝑛 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 (𝑄′ , 𝜕, 𝑇1, 𝑇2)  ∈ 𝐹𝑎𝑙𝑠𝑒       (8) 

 

 

From (7) and (8), the optimal polygonal contour is sufficiently close (i.e.,) nearest neighbor and has less 

contour segments. This in turn reduces the storage-space with minimal computational overhead. Fig. 5 shows the 

algorithmic description of optimal polygon contour model.  

 

Algorithm shows the optimal polygon contour algorithm. The optimal polygon contour includes three 

important steps. In first step, for each user query at different time intervals, the distance between the user queries is 

measured. So that sufficiently close (i.e.,) nearest neighbor is identified and it has less contour segments. Then the 

optimal polygon contour is measured based on the ‘if-then-condition’. When the condition is true, the expected 

location of the original query ‘𝑄’ at time ‘𝑇𝑖’ no more than spatiotemporal tolerance factor ‘𝜕’ from the interior of 

‘𝑄. This helps to minimize storage space and improves the query processing efficiency. Otherwise, the location of 

the original query ‘𝑄’ at time ‘𝑇𝑖’ is outside of Q. This helps to identify the uncertain data.  

 

Input: User‘𝑈𝑠𝑒𝑟𝑖 =  𝑈𝑠𝑒𝑟1 , 𝑈𝑠𝑒𝑟2 , … , 𝑈𝑠𝑒𝑟𝑛’,polygon‘𝑃’, 

Query ‘𝑄𝑢𝑒𝑟𝑦𝑖 =  𝑄𝑢𝑒𝑟𝑦1, 𝑄𝑢𝑒𝑟𝑦2, … , 𝑄𝑢𝑒𝑟𝑦𝑛’, Timestamp ‘𝑇𝑖 = 𝑇1, 𝑇2, … , 𝑇𝑛’ 

Output:  

Step 1: Begin  

Step 2:          For each user 𝑈𝑠𝑒𝑟𝑖  

Step 3:                  For each query 𝑄𝑢𝑒𝑟𝑦𝑖 

Step 4:                            For each timestamp 𝑇𝑖  

Step 5:                               Evaluate the distance between the users (i.e. queries) using (5) 

Step 6:                               Measure optimal polygon contour using (6) 

Step 7:                                 If (𝑄 ∩ 𝑃 )  = 𝑇𝑟𝑢𝑒 then  

Step 8:                                                 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 (𝑄′ , 𝜕, 𝑇1, 𝑇2)  ∈ 𝑇𝑟𝑢𝑒 

Step 9:                                End if 

Step 10:                                If (𝑄 ∩ 𝑃 )  ≠ 𝑇𝑟𝑢𝑒 then 

Step 11 :                                             𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 (𝑄′ , 𝜕, 𝑇1, 𝑇2)  ∈ 𝐹𝑎𝑙𝑠𝑒   
Step 12:                               End if  

Step 13:                        End for 

Step 14:                 End for 

Step 15:           End for 

Step 16 : End  

 

Figure 5. Optimal Polygon Contour Algorithm 

 

For example: we use census income dataset, the various types of persons on uncertain database with 

attributes details are selected for predict whether the user income exceeds 50 dollars/yr. For each user, the various 

attributes are taken into consideration for experimental. The optimal Polygon Contour is measured using Euclidean 

distances between the users. Due to, the nearest neighbors are identified and it has less contour segments. Next, ‘if-

then condition’ is used to estimate the polygon contour for predict the user income. If the user is encircled within the 

polygon contour, then the user income is not exceeds 50 dollars/yr (i.e. less than or equal to 50 dollars/year). 

Otherwise, it predicts the uncertain data (i.e. user income exceed 50 dollars/yr). 

 

CG-NN Approximation considers various types of queries on uncertain database, determines the query 

type, and distance function to provide solution for queries on uncertain data. Contour Generalization approximates a 

polygonal contour, so that it is sufficiently close (i.e.,) nearest neighbor and has less contour segments. The lesser 

contour segments takes less storage-space and thus minimizing the computational overhead. 
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IV. EXPERIMENTAL RESULTS 

 

For efficient analysis of NN based continuous queries, the CC-NNA technique used census income dataset 

extracted from UCI repository. The following experiments are based on census income datasets, each consisting of a 

set of 14 attributes of both categorical and integer characteristics in nature. Additionally, we also applied our 

technique to two census income datasets where the prediction of uncertain data, income is measured to see whether 

it exceeds ‘50 𝑑𝑜𝑙𝑙𝑎𝑟/𝑦𝑒𝑎𝑟’.  

 

The extraction of census income dataset was done by Barry Becker from the 1994 Census database. A set 

of reasonably clean records was extracted using the following conditions: ((AAGE>16) && (AGI>100) && 

(AFNLWGT>1) && (HRSWK>0)).                                               The data was extracted from the census bureau 

database found at http://www.census.gov/ftp/pub/DES/www/welcome.html. 

 

Prediction task is to determine whether a person makes over 50K a year. The fourteen attributes included in 

the experiments are age, workclass, fnlwgt, education, education-num, marital status, occupation, relationship, race, 

sex, capital-gain, capital-loss, hours-per-week and native-country. 

 

In order to perform the experiments, our technique CC-NNA technique used six important attributes like, 

age, work-class, education, occupation, hours-per-week and native country to determine whether a person makes 

over 50K a year. Seven iterations were conducted with different age ranging between 40 years and 50 years 

conducted at different time periods.  

 

V. DISCUSSION 

 

In this section, we analyze our proposed technique CC-NNA with respect to computation overhead, 

spatiotemporal tolerance with respect to average operation cost, query efficiency and storage space. We also 

compare our proposed technique with well-known mining methods on uncertain data known as Processing 

Continuous Range with Spatiotemporal Tolerance (PCR-ST) [1] and Superseding Nearest Neighbor on Uncertain 

Spatial Database (SNN-USD) [2].  

A. Scenario 1: Analysis of computation overhead 

 

In this section to check the efficiency of CC-NNA technique, the metric computation overhead is evaluated 

and compared with the state-of-the-art works, PCR-ST [1] and SNN-USD [2].The computation overhead is the time 

taken to process the query for every input query points. The computation overhead is the product of the number of 

queries ‘𝑄𝑖’ and the time taken to process the queries ‘𝑇𝑖𝑚𝑒 (𝑄𝑖)’ respectively. The mathematical formulation for 

computation overhead is as given below.  

 

𝐶𝑂 = ∑ 𝑄𝑖 ∗ 𝑇𝑖𝑚𝑒 (𝑄𝑖)𝑛
𝑖=1          (9) 

 

From (9), the computation overhead ‘𝐶𝑂’ is evaluated and is measured in terms of milliseconds (ms). 

Lower the computation overhead, more efficient the method is said to be. To deliver with a detailed performance, in 

Table 1 we apply the number of queries and time taken to retrieve the query to obtain the computation overhead and 

comparison is made with two other existing methods, PCR-ST and SNN-USD respectively. Lower computation 

overhead results in the improvement of the technique.  

 

 

 

 

 

 

 

 

 

http://www.census.gov/ftp/pub/DES/www/welcome.html
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TABLE 1. TABULATION FOR COMPUTATION OVERHEAD 

 

No. of queries (Q) 
Computation overhead (ms) 

CC-NNA PCR-ST SNN-USD 

5 1.82 2.48 2.91 

10 3.56 4.16 4.46 

15 5.87 6.47 6.77 

20 7.85 8.45 8.75 

25 4.32 5.02 5.32 

30 6.55 7.15 7.45 

35 8.13 9.03 9.33 

   

A comparative analysis for computation overhead with respect to different number of queries was 

performed with the existing PCR-ST and SNN-USD is shown in Fig. 6. The increasing number of queries in the 

range of 5 to 35 is considered for experimental purpose on mining uncertain data. As illustrated in figure, 

comparatively while considering more number of queries, the computation overhead also increases, though 

betterment achieved using the proposed technique CC-NNA. 

 

 

Figure 6. Measure of Computation Overhead 

 

The measurement of computation overhead is comparatively reduced using the CC-NNA technique when 

compared to two other existing methods [1, 2]. This improvement in computation overhead is because of the 

application of Contour Generalization based on the Euclidean distance and the query type on analyzing the NN 

based continuous queries. Furthermore, a spatiotemporal tolerance factor ‘𝜕’ introduced in CC-NNA technique is an 

ordered collection that in turn reduces the computation overhead by 15.34% and 23.37 % compared to PCR-ST and 

SNN-USD respectively. 

B. Scenario 2: Analysis of spatiotemporal tolerance 

 

Table 2 shows the average operation cost for seven different iterations with varied spatiotemporal tolerance 

rate ‘𝜕’. Based on the spatiotemporal tolerance, the average operation cost (i.e. for queries) ‘𝐴𝑂𝐶’ is mathematically 

formulated as given below.  

𝐴𝑂𝐶 = 𝑆𝑇 ∗ 𝑄𝐴           (10) 
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From (10), the average operation cost ‘𝐴𝑂𝐶’ is evaluated using the spatiotemporal tolerance ‘𝑆𝑇’ and the 

queries addressed ‘𝑄𝐴’. The average operation cost is measured in terms of percentage (%). 

 

The second evaluation metric considered for evaluating the effectiveness of the technique CC-NNA is 

average operation cost with respect to different spatiotemporal tolerance rate. Fig. 5  shows the elaborate 

comparison made with the existing two state-of-the-art works.  

 

TABLE 2. TABULATION FOR AVERAGE OPERATION COST 

 

Spatiotemporal 

tolerance () 

Average operation cost (%) 

CC-NNA PCR-ST SNN-USD 

0.1 71.35 60.89 51.35 

0.2 75.87 63.82 52.75 

0.3 79.35 67.30 59.25 

0.4 68.45 56.40 49.35 

0.5 72.87 60.82 53.75 

0.6 75.33 63.28 56.23 

0.7 81.35 69.30 62.25 

 

 

 

Figure 7. Measure of average operation cost 

 

From Fig. 7 it is clear that CC-NNA performs better than PCR-ST [1] and SNN-USD [2]. In CC-NNA 

technique, with an increase in the spatiotemporal tolerance, the average operation cost also increases. As shown in 

Figure 7, the average operation cost is reduced using the proposed CC-NNA technique. With the construction of 

Optimal Contour Generalization algorithm, where interpolation is made based on the nearest neighbor, the average 

operation cost is reduced using the proposed CC-NNA technique. By constructing distance function and query type, 

whenever a query is being issued by the user regarding the income of the customer, the Optimal Contour 

Generalization algorithm provide spatiotemporal tolerance factor ‘𝜕’ resulting in minimizing the average operation 

cost. This integration of distance function, query type and optimal selection of spatiotemporal tolerance factor 

results in the improvement of average operation cost by 15.81% compared to PCR-ST. Besides, different queries on 

uncertain data are addressed for different users. As a result, better performance is provided and therefore the average 

operation cost is reduced by 26.68% compared to SNN-USD. 

C. Scenario 3: Analysis of query processing efficiency 

 

The efficiency of query processing using three techniques namely, CC-NNA, PCR-ST and SNN-USD is 

provided in table 3. The Query processing efficiency was performed based on the queries addressed ‘𝑄𝐴’ to the total 

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7A
v

er
a

g
e 

o
p

er
a

ti
o

n
 c

o
st

 (
%

)

Spatiotemporal tolerance

CC-NNA

PCR-ST

SNN-

USD



289 
 

number of queries ‘𝑄’ issued by the user with different timestamps ‘𝑇’ respectively. The query processing efficiency 

is mathematically formulated as given below. 

𝑄𝑃𝐸 =  (
𝑄𝐴

𝑄
) ∗ 𝑇 ∗ 100          (11) 

The query processing efficiency is measured in terms of percentage (%). Higher the query processing 

efficiency, more efficient the method is said to be.  

 

TABLE 3. TABULATION FOR QUERY PROCESSING EFFICIENCY 

 

No. of queries (Q) 
Query processing efficiency (%) 

CC-NNA PCR-ST SNN-USD 

5 74.19 64.32 59.42 

10 71.35 61.48 52.37 

15 75.32 63.20 57.15 

20 79.21 67.08 60.03 

25 84.35 72.23 67.18 

30 76.13 64.01 57.01 

35 86.52 74.30 67.25 

 

Fig. 8 shows the measure of query processing efficiency with respect to different number of queries in the 

range of 5 to 35. As shown in the figure, the query processing efficiency is observed to be improved using CC-NNA 

technique than when compared to PCR-ST and SNN-USD respectively. This is because of the application of optimal 

polygon contour algorithm. By applying optimal polygon contour algorithm, optimal polygon contour is measured 

based on the ‘if-then-condition’ for queries on uncertain data. This in turn improves the query processing efficiency 

by 14.70% compared to PCR-ST and 23.22% compared to SNN-USD respectively.  

 

 

 

Figure 8. Measure of query processing efficiency 

 

 

D. Scenario 4: Analysis of storage space 

In order to measure the storage space based on the users query information through the CC-NNA 

technique, the contour segments with polygon contour is considered during the experiments on uncertain data. 

Storage space on uncertain data refers to the rate at which the contour segments are evaluated on uncertain data. 

Lower the amount of storage space, more reliable the technique is said to be.   
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TABLE 4. TABULATION FOR STORAGE SPACE 

 

Methods Storage space (MB) 

CC-NNA 155 

PCR-ST 185 

SNN-USD 235 

 

 

The storage space using CC-NNA, PCR-ST and SNN-USN technique is provided in an elaborate manner in 

table 4 with different users’ query with varied attributes are implemented using MATLAB.  

 

Figure 9. Measure of storage space 

 

Fig. 9 shows the storage space ratio based on census income dataset extracted from the UCI repository with 

respect to 35 different queries during implementation settings at different time intervals. As depicted in the figure 

with the increase in the number of queries, the storage space is also increased. But when compared to the state-of-

the-art works, the storage space is comparatively better than the two other methods. This is because the proposed 

CC-NNA uses polygon contour in addition to time-based sliding window while mining uncertain data. So the 

storage space is reduced by 19.35% compared to PCR-ST and 27.02% compared to SNN-USD respectively.  

 

VI. CONCLUSION 

This work presents a novel technique called Contour Generalization based NN approximation for mining 

uncertain data with the objective of solving the spatiotemporal problem. The performance of the proposed technique 

is compared with other mining methods on uncertain data (namely, PCR-ST and SNN-USD). The proposed 

technique has the following advantages. (i) Reduce the computation overhead by applying Contour Generalization 

technique with the aid of Euclidean distance and query type, (ii) provides lesser average operation cost using 

Optimal Contour Generalization algorithm which significantly reduces the spatiotemporal problem, (iii) 

representation of Optimal Polygon Contour algorithm for improving the query processing efficiency. Finally with 

the construction of optimal polygon contour based on the ‘if-then-condition’, the storage space is reduced in a 

significant manner. Experiments were conducted to measure the performance of CC-NNA technique and evaluated 

the performance in terms of different metrics, such as computation overhead, average operation cost, query 

efficiency and storage space for effective mining of uncertain data. The results show that CC-NNA technique offers 

better performance with an improvement of query processing efficiency by 14.70% and reducing the storage space 

by 46.38% compared to PCR-ST and SNN-USD respectively.  
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